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Comment on “Study of phase-separation dynamics by use of cell dynamical systems.
I. Modeling”
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The cell dynamical systems method of Oono and PRhys. Rev. A38, 434 (1988] for modeling phase-
ordering dynamics is reexamined. We show how some rather puzzling features of this method can be analyzed
on the basis of its relation to conventional partial differential equati@®5063-651X97)03702-1

PACS numbe(s): 61.20.Ja, 64.75:g, 64.70.Kb

A few years ago an alternative method was proposed foest neighbors on driangular, rather than square, two-
modeling the phase-ordering and phase-separation dynamidémnensional2D) lattice. Finally, we investigate the stability
of thermodynamically unstable systerfis]. This scheme, of different discrete 2D Laplaciari21].
later called the cell dynamical syste@DS) method[2,3], is Let us consider the fundamental equations of the CDS
no less realistic, and computationally more efficient, than thénethod[1,2], where time and space are measured in units of
more usual analytical formulation in terms of partial differ- time step and mesh size, respectively:
ential equationsPDES [4,5]. This allows easier exploration P+ 1) =T p(r, )= (Fp(r,H ] g(r,0))), (D)
of the late-time regime of phase ordering or spinodal decom-
position, which is the focus of much current research aimed FLp(r, )] =1 (g(r,0))+D[{(p(r)) —(r, D], (2
at verlfylng several dynamical scaling hypotheb&$]. Fur- wheref(x) is the nonlinear magpwhich we leave unspecified
thermore, it has been shown that the CDS method has essell o moment ((*))—* is the isotropized di o o~
. . . . pized discrete “La
tially the same dynamical scaling properties as the Cahn{)lacian” on a square lattice, with
Hilliard (CH) equation7—13] and is therefore a reliable tool '
for their elucidation/14—186. 1 1

However, the very success of the CDS approach remains ((r.0))= 6 ie%N} vl ’t)+1_2ie{§N:NN} AURLINC)
somewhat mysterious. It has been described as a semigroup
discretization of the CH equation that allows a far larger timeNN and NNN denoting nearest and next-nearest neighbors,
step to be used in the numerical integration than the usudfspectively; and sets the time scale of phase separation.
finite-difference schemef2,17]. In this context, different This last quantity is identified with the phenomenological
time and space increments correspond to different solutioffiffusion constanf2]. Subtracting/(r,t) from both sides of
semigroups, which, in turn, are determined by different free£0. (1) and making the identifications g (r,t+1)
energy functionals. In the limit of small increments the — ¥(r,t)=ay(r,t)/dt, ((*))—* ~V?*, we immediately ob-
method reduces to the simplest Euler scheme; nevertheless!®n
seems to be successful even when increments are larger than W
allowed by stability analysigsee below. Hence general
properties such as structure factors seem to be fairly inde-
pendent of the form of the free-enerfy8]. In particular, it This reduces to the CH equation in nondimensional form
has bee_n noted that the usual formulation of the CDS modetbf;] if 2y—2f()=— ¢+ ¢° andD = %, whence
can be interpreted as governed by an underlying PDE of the
CH type associated with a modified free-energy functional

= = VA= VAT(y) +DV2y). 4

— e —_ 3
[16]. Moreover, the rather surprising forms of the discrete f)= 2 4 2 v )
CDS Laplacians have received some justificafit®, 20, but
have not, to our knowledge, been studied in detail. which is justitanhy to ordery®. Now the preferred form of

In this Comment we show that the CDS equations dahe map in Oono and Puri's original papef$—3] is
indeed formally reduce to the usual CH equation in a veryf,(¢)=Atanhf, with A=1.3 andD=0.5 (A=1.5 in later,
simple way, which, we believe, had not been fully appreci-3D, work[20]). An alternative choicg¢see[2], Eq.(2.11)] is
ated before. In addition, we shall argue that isotropy could bd () =Ay/[ 1+ y?(A>—1)]Y2% for small 4 and A=1.3,
further improved by using a Laplacian containing only near-f5(#)~1.3y—0.4485)°%, again not very far from Eq(5).
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Also note that settin@ =0 transforms Eq(4) into a nonlin-  tion onto two dimensions of the Laplacian containing only
ear diffusion equation and need not lead to a freezing of thaearest neighbors on the face-centered hypercubic lattice, as
dynamics. Thus the identification &f with a diffusion con-  used in lattice-ga$24] and lattice-Boltzmanii25] simula-
stant appears less than warranted. tions, where the choice of a sufficiently isotropic lattice is
Consider now the discrete Laplacian, E8). This rather essential for recovering the correct hydrodynamic behavior.
unconventional form is dictated by the requirement that patHowever, the nine-point star on the square lattice also per-
terns should be as isotropic as possible in order to yield gootbrms quite well; we will discuss this further below.
scaling of the structure factof4—3,19,20. To see this in a Rogerset al. [26] have investigated the stability of the
more systematic way, let us write down several differentEuler-discretized CH equation with respect to time step and
versions of the discretized Laplacian in Fourier spE¢k).  mesh size. Their analysis is based on Fourier-transforming
In all that follows we restrict ourselves to two dimensions:the linearized equation and therefore carries through with
(i) the usual five-point stabP) (se€[22], Eqg. 25.3.3pon the  minor changes: basically only the discrete Laplacians will be
square lattice, NN only: different. The linearized CDS equation with the tanh map is,
from Eq. (4),

2
I'sp(k) = ——=[coq k,Ax) +cogk,Ax)—2
2
=—(k2+k2)+(AX) (k2+k2)2 . : : _
x Ty 3 x Ty Note that,for stability considerationsthe detailed form of
the mapf(y) is irrelevant beyond the linear term. We also
B Z(AX)2k2k2+O - g  naturally recover the CDS requirement ti#at 1. The con-
3 xky +O(K®); ) dition for the subharmonic bifurcation now beconege

; _ [26], Eq.(3.9)]
(i) the 9-point staf9P) (see[22], Eq. 25.3.31 on the square (1= A)ALT(K)— DALT2(K)< — 2, (11)

lattice, NN and NNN along axes:

whereAt is the time step used in the numerical integration. It
then follows that the subharmonic bifurcation can be
avoided, for allk modes, by maintaining the inequalities

1 [8
ng(k)zw §[cos{kxAx)+cos{kyAx)]

—~ 1[cos(2|<XAx)+cos<2k AX)]-5 (Ax)*
6 y At<32D_4(A_1)(AX)2 (5P), (12)

= — (KZ+ ko) +O(K®); (7) (Ax)*
At< 9P, 13
(iii) Oono and Puri's choicéOP), Eg. (3), on the square 50D —5(A—1)(Ax)? (9P 13

lattice, NN and NNN with relative weights 1 arid[23]: (Ax)*
B AM<tep—3a-n@ax? ©OP 19

I'op(k)= m{2c0$kxAx)+ZcoskyAx) (Ax)* _

AM<zp—aa-nax? M (19

+cog (ky+ k) Ax]+ cog (ky—ky)Ax]—6}

iy (AX)Z(k2+k2)2 For A=1.3, D=0.5, andAx=1.0 as before, this gives
xRy 12 VT hy At<0.067(5P and trj, At<0.042(9P), andAt<0.12(OP).
5 Indeed OP has the best stability properties, i.e., admits the
N (AX) K2K2+ O(KP): ® largest time step, for a given choice &f D, andAx. Con-
12 x ’ versely, for values oAt andAx that do not satisfy the above

stability requirements, as is the case in most CDS modeling,
OP leads to the least severe violation. On the other hand, the
1 3 nine-point Laplacian requires the smallest time step and is
2cos{kxAx)+2co<—kxAx+ \/:kyAx) perhaps less convenient for extensive numerical work, in
2 2 spite of its excellent isotropy.
We have investigated some of the features of the CDS
_6}

(iv) the triangular latticdtri), NN only:

2
[yi(k) = 3(Ax)2
+Zcos<3kxAx— \ﬁkyAx method by exploring its.relation to PDEs. It appears that the
2 2 form of the CDS Laplacian can be best justified by its better
(Ax)2 stability properties, but it should be possible to improve isot-
= k§+ ki_ (k§+ k§)2+ 0o(k®), 9) ropy by going to a triangular lattice.

16
The work of the FOM Institute is part of the research
whereAx is the mesh size. Although Oono and Puri's form program of FOM and is supported by the Nederlandse Or-
is more isotropic than the “naive” five-point star, both are ganisatie voor Wetenschappelijk Onderzo@¥wO). We
inferior to the Laplacian containing only nearest neighborghank Daan Frenkel for helpful suggestions and comments
on the triangular lattice, which is isotropic to ordérdue to  and Christopher Lowe for a critical reading of the manu-
the higher symmetry of that lattice. OP is in fact the projec-script.
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