
hedule as

PHYSICAL REVIEW E MARCH 1997VOLUME 55, NUMBER 3
COMMENTS

Comments are short papers which criticize or correct papers of other authors previously published in thePhysical Review. Each
Comment should state clearly to which paper it refers and must be accompanied by a brief abstract. The same publication sc
for regular articles is followed, and page proofs are sent to authors.

Comment on ‘‘Study of phase-separation dynamics by use of cell dynamical systems.
I. Modeling’’
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FOM Instituut voor Atoom- en Molecuulfysica, Kruislaan 407, NL-1098 SJ Amsterdam, The Netherlands

~Received 25 January 1996!

The cell dynamical systems method of Oono and Puri@Phys. Rev. A38, 434 ~1988!# for modeling phase-
ordering dynamics is reexamined. We show how some rather puzzling features of this method can be analyzed
on the basis of its relation to conventional partial differential equations.@S1063-651X~97!03702-1#

PACS number~s!: 61.20.Ja, 64.75.1g, 64.70.Kb
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A few years ago an alternative method was proposed
modeling the phase-ordering and phase-separation dyna
of thermodynamically unstable systems@1#. This scheme,
later called the cell dynamical system~CDS! method@2,3#, is
no less realistic, and computationally more efficient, than
more usual analytical formulation in terms of partial diffe
ential equations~PDEs! @4,5#. This allows easier exploration
of the late-time regime of phase ordering or spinodal deco
position, which is the focus of much current research aim
at verifying several dynamical scaling hypotheses@4,6#. Fur-
thermore, it has been shown that the CDS method has es
tially the same dynamical scaling properties as the Ca
Hilliard ~CH! equation@7–13# and is therefore a reliable too
for their elucidation@14–16#.

However, the very success of the CDS approach rem
somewhat mysterious. It has been described as a semig
discretization of the CH equation that allows a far larger ti
step to be used in the numerical integration than the u
finite-difference schemes@2,17#. In this context, different
time and space increments correspond to different solu
semigroups, which, in turn, are determined by different fr
energy functionals. In the limit of small increments th
method reduces to the simplest Euler scheme; neverthele
seems to be successful even when increments are larger
allowed by stability analysis~see below!. Hence genera
properties such as structure factors seem to be fairly in
pendent of the form of the free-energy@18#. In particular, it
has been noted that the usual formulation of the CDS mo
can be interpreted as governed by an underlying PDE of
CH type associated with a modified free-energy functio
@16#. Moreover, the rather surprising forms of the discre
CDS Laplacians have received some justification@19,20#, but
have not, to our knowledge, been studied in detail.

In this Comment we show that the CDS equations
indeed formally reduce to the usual CH equation in a v
simple way, which, we believe, had not been fully appre
ated before. In addition, we shall argue that isotropy could
further improved by using a Laplacian containing only ne
551063-651X/97/55~3!/3789~3!/$10.00
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est neighbors on atriangular, rather than square, two
dimensional~2D! lattice. Finally, we investigate the stabilit
of different discrete 2D Laplacians@21#.

Let us consider the fundamental equations of the C
method@1,2#, where time and space are measured in units
time step and mesh size, respectively:

c~r ,t11!5F@c~r ,t !#2^^F@c~r ,t !#2c~r ,t !&&, ~1!

F@c~r ,t !#5 f „c~r ,t !…1D@^^c~r !&&2c„r ,t…#, ~2!

wheref (x) is the nonlinear map~which we leave unspecified
for the moment!; ^^* &&2* is the isotropized discrete ‘‘La-
placian’’ on a square lattice, with

^^c~r ,t !&&5
1

6 (
iP$NN%

c~r i ,t !1
1

12 (
iP$NNN%

c~r i ,t !, ~3!

NN and NNN denoting nearest and next-nearest neighb
respectively; andD sets the time scale of phase separati
This last quantity is identified with the phenomenologic
diffusion constant@2#. Subtractingc(r ,t) from both sides of
Eq. ~1! and making the identificationsc(r ,t11)
2c(r ,t)']c(r ,t)/]t, ^^* &&2*'¹2*, we immediately ob-
tain

]c

]t
5¹2c2¹2@ f ~c!1D¹2c#. ~4!

This reduces to the CH equation in nondimensional fo
@26# if 2c22 f (c)52c1c3 andD5 1

2, whence

f ~c!5
3

2
c2

1

2
c3, ~5!

which is just 32tanhc to orderc3. Now the preferred form of
the map in Oono and Puri’s original papers@1–3# is
f 1(c)5Atanhc, with A51.3 andD50.5 (A51.5 in later,
3D, work @20#!. An alternative choice@see@2#, Eq. ~2.11!# is
f 3(c)5Ac/@11c2(A221)#1/2; for small c and A51.3,
f 3(c)'1.3c20.4485c3, again not very far from Eq.~5!.
3789 © 1997 The American Physical Society
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Also note that settingD50 transforms Eq.~4! into a nonlin-
ear diffusion equation and need not lead to a freezing of
dynamics. Thus the identification ofD with a diffusion con-
stant appears less than warranted.

Consider now the discrete Laplacian, Eq.~3!. This rather
unconventional form is dictated by the requirement that p
terns should be as isotropic as possible in order to yield g
scaling of the structure factors@1–3,19,20#. To see this in a
more systematic way, let us write down several differe
versions of the discretized Laplacian in Fourier spaceG(k).
In all that follows we restrict ourselves to two dimension
~i! the usual five-point star~5P! ~see@22#, Eq. 25.3.30! on the
square lattice, NN only:

G5P~k!5
2

~Dx!2
@cos~kxDx!1cos~kyDx!22#

52~kx
21ky

2!1
~Dx!2

3
~kx

21ky
2!2

2
2~Dx!2

3
kx
2ky

21O~k6!; ~6!

~ii ! the 9-point star~9P! ~see@22#, Eq. 25.3.31! on the square
lattice, NN and NNN along axes:

G9P~k!5
1

~Dx!2 H 83@cos~kxDx!1cos~kyDx!#

2
1

6
@cos~2kxDx!1cos~2kyDx!#25J

52~kx
21ky

2!1O~k6!; ~7!

~iii ! Oono and Puri’s choice~OP!, Eq. ~3!, on the square
lattice, NN and NNN with relative weights 1 and12 @23#:

GOP~k!5
1

2~Dx!2
$2cos~kxDx!12cos~kyDx!

1cos@~kx1ky!Dx#1cos@~kx2ky!Dx#26%

52~kx
21ky

2!1
~Dx!2

12
~kx

21ky
2!2

1
~Dx!2

12
kx
2ky

21O~k6!; ~8!

~iv! the triangular lattice~tri!, NN only:

G tri~k!5
2

3~Dx!2
F2cos~kxDx!12cosS 12 kxDx1A3

2
kyDxD

12cosS 12 kxDx2A3

2
kyDxD 26G

52kx
21ky

22
~Dx!2

16
~kx

21ky
2!21O~k6!, ~9!

whereDx is the mesh size. Although Oono and Puri’s for
is more isotropic than the ‘‘naive’’ five-point star, both a
inferior to the Laplacian containing only nearest neighb
on the triangular lattice, which is isotropic to orderk4 due to
the higher symmetry of that lattice. OP is in fact the proje
e
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t

:

s

-

tion onto two dimensions of the Laplacian containing on
nearest neighbors on the face-centered hypercubic lattic
used in lattice-gas@24# and lattice-Boltzmann@25# simula-
tions, where the choice of a sufficiently isotropic lattice
essential for recovering the correct hydrodynamic behav
However, the nine-point star on the square lattice also p
forms quite well; we will discuss this further below.

Rogerset al. @26# have investigated the stability of th
Euler-discretized CH equation with respect to time step a
mesh size. Their analysis is based on Fourier-transform
the linearized equation and therefore carries through w
minor changes: basically only the discrete Laplacians will
different. The linearized CDS equation with the tanh map
from Eq. ~4!,

]c

]t
5¹2@~12A!c2D¹2c#. ~10!

Note that,for stability considerations, the detailed form of
the mapf (c) is irrelevant beyond the linear term. We als
naturally recover the CDS requirement thatA.1. The con-
dition for the subharmonic bifurcation now becomes@see
@26#, Eq. ~3.9!#

~12A!DtG~k!2DDtG2~k!,22, ~11!

whereDt is the time step used in the numerical integration
then follows that the subharmonic bifurcation can
avoided, for allk modes, by maintaining the inequalities

Dt,
~Dx!4

32D24~A21!~Dx!2
~5P!, ~12!

Dt,
~Dx!4

50D25~A21!~Dx!2
~9P!, ~13!

Dt,
~Dx!4

18D23~A21!~Dx!2
~OP!, ~14!

Dt,
~Dx!4

32D24~A21!~Dx!2
~ tri!. ~15!

For A51.3, D50.5, and Dx51.0 as before, this gives
Dt,0.067~5P and tri!, Dt,0.042~9P!, andDt,0.12 ~OP!.
Indeed OP has the best stability properties, i.e., admits
largest time step, for a given choice ofA, D, andDx. Con-
versely, for values ofDt andDx that do not satisfy the abov
stability requirements, as is the case in most CDS model
OP leads to the least severe violation. On the other hand
nine-point Laplacian requires the smallest time step and
perhaps less convenient for extensive numerical work,
spite of its excellent isotropy.

We have investigated some of the features of the C
method by exploring its relation to PDEs. It appears that
form of the CDS Laplacian can be best justified by its bet
stability properties, but it should be possible to improve is
ropy by going to a triangular lattice.

The work of the FOM Institute is part of the resear
program of FOM and is supported by the Nederlandse
ganisatie voor Wetenschappelijk Onderzoek~NWO!. We
thank Daan Frenkel for helpful suggestions and comme
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@15# E. T. Gawlinski, J. Viñals, and J. D. Gunton, Phys. Rev. B39,
7266 ~1988!.

@16# A. Chakrabarti and G. Brown, Phys. Rev. A46, 981 ~1992!.
@17# Y. Oono, IEICE Trans. E74, 1379~1991!.
@18# We are grateful to the authors of the original paper for clar

cation of this point.
@19# H. Tomita, Prog. Theor. Phys.85, 47 ~1991!.
@20# A. Shinozaki and Y. Oono, Phys. Rev. E48, 2622~1993!.
@21# We consider only the conserved order parameter case ex

itly; restriction to the nonconserved case is straightforward
@22# Handbook of Mathematical Functions, edited by M.

Abramowitz and I. A. Stegun~Dover, New York, 1972!.
@23# We have normalized Oono and Puri’s expression, Eq.~3!, for

ease of comparison.
@24# U. Frisch, B. Hasslacher, and Y. Pomeau, Phys. Rev. Lett.56,

1505 ~1986!.
@25# G. R. McNamara and G. Zanetti, Phys. Rev. Lett.61, 2332

~1988!.
@26# T. M. Rogers, K. R. Elder, and R. C. Desai, Phys. Rev. B37,

9638 ~1988!.


